Ergebnisse Wassertechnischer Berechnungen St 2177

" Kulmain - Marktredwitz " Ortsumgehung Waldershof

Bau-km 0+000 bis Bau-km 3+424 Abschn. 320, Station 1,731 bis Abschn. 360, Station 0,272

Planfeststellung vom 31.03.2014

Aufgestellt: Amberg, den 20.08.2018 Staatliches Bauamt Amberg-Sulzbach Wasmuth, Ltd. Baudirektor	RRB 01 und RBB 03

Berechnungsergebnisse gemäß A 117 (RRB 1)

PROGRAMM REHM / REBECK 9.0

Ing.-Büro für Tiefbautechnik Wolf & Zwick Marktredwitz GmbH

Projekt: Waldershof

Einzelbeckenberechnung

Becken:	Becken 01	Abfluss nach:	0	
Bezeichnung:	Entwässerungsgebie	t 01		

Bemessungsgrundlagen

Fläche des kanalisierten Einzugsgebietes	AE,k =	7,22	ha
Befestigte Fläche	AE,b =	1,91	ha
Mittlerer Abflussbeiwert der befestigten Fläche	Psi m,b =	0,591	-
Nicht befestigte Fläche	AE,nb =	5,31	ha
Mittlerer Abflussbeiwert der nicht befestigten Fläche	Psi m,nb =	0,100	-
Rechnerische Fließzeit im Kanalnetz bei Vollfüllung	tf =	5,30	min
Trockenwetterabfluss	Qt24 =	0,00	l/s
Drosselabfluss	Qdr =	30,00	l/s
Zuschlagsfaktor	fz =	1,20	-

Berechnungsergebnisse:

Undurchlässige Fläche: Au= AE,b * Psi m,b + AE,nb * Psi m,nb Au = 1,66 ha Drosselabflussspende: qdr,r,u=(Qdr-Qt24) / Au qdr,r,u=18,07 l/s*ha Abminderungsfaktor aus tf=5,3 min und tf=0,20 /a tf=0,995 -

Gewählter Niederschlag: **Waldershof** Überschreitungshäufigkeit: n= 0,20 /a

Dauer-	Niederschlags-	Zugehörige	Drosselabfluss-	Differenz	spezifisches
stufe	höhe	Regenspende	spende		Speichervolumen
D	hN	r	qdr,r,u	r - qdr,r,u	Vs,u
min, h	mm	l/s.ha	l/s.ha	l/s.ha	m3/ha
5 min	9,8	326,7	18,1	308,6	111
10 min	14,6	243,3	18,1	225,3	161
15 min	17,9	198,9	18,1	180,8	194
20 min	20,3	169,2	18,1	151,1	217
30 min	23,9	132,8	18,1	114,7	247
45 min	27,6	102,2	18,1	84,2	271
60 min	30,3	84,2	18,1	66,1	284
90 min	32,7	60,6	18,1	42,5	274

Erforderliches spezifisches Volumen

Vs,u = 284 m3/ha

Datum: 24.01.2014

Erforderliches Rückhaltevolumen V = Vs,u * Au

V = 472 m3

gewähltes Beckenvolumen:

 $V = 475 \text{ m}^3$

Projekt: St 2177 "Kulmain-Marktredwitz"

OU Waldershof

Bauherr: Freistaat Bayern

Datum: 24.01.2014

Berechnungsergebnis gemäß M 153 (RRB 1)

Gewässer	Тур	Gewässerpunkte G
(Tabellen 1a und 1b)		
Fließgewässer	G22	11
Einleitung innerhalb eines Wasserschutzgebietes mit		
Uferfiltratgewinnung		

Flächen	Art der Befestigung	$A_{E,k}$	Ψ_{m}	A _u	f _i
Mulden	unbefestigt	0,2980	0,40	0,1192	0,07
Dammböschungen	bewachsen	0,4900	0,30	0,1470	0,09
Bankette	Schotter	0,3680	0,50	0,1840	0,11
Fahrbahn	Asphalt	0,7570	0,90	0,6813	0,41
Gärten, Wiesen und Kulturland mit	flaches Gelände	5,3060	0,10	0,5306	0,32
möglichem Regenabfluss in das					
Entwässerungssystem					
Summe		7,22		1,66	~1,00

Flächer	nanteil f _i	Luft L _i Flächen F _i		Abflussbelastung B _i		
(Кар	(Kapitel 4)		(Tabelle 2)		elle 3)	
A _{u,i}	fi	Тур	Punkte	Тур	Punkte	$B_i = f_i * (L_i + F_i)$
0,1192	0,07	L2	2	F5	27	0,58
0,1470	0,09	L2	2	F5	27	2,90
0,1840	0,11	L2	2	F5	27	3,19
0,6813	0,41	L2	2	F5	27	12,47
0,5306	0,32	L1	1	F2	8	2,88
Σ = 1,66	Σ = ~1,00	Abflussbelastung $B = \sum B_i$:			B = 22,02	

B = 22,02; G = 11,00

B > G --> eine Regenwasserbehandlung ist erforderlich

Ingenieurbüro f. Tiefbautechnik Wolf & Zwick Marktredwitz GmbH

Projekt: St 2177 "Kulmain-Marktredwitz"

OU Waldershof

Bauherr: Freistaat Bayern

Datum: 24.01.2014

Maximal zulässiger Durchgangswert $D_{max} = G / B$	D _{max} = 0,50
---	-------------------------

Vorhergesehene Behandlungsmaßnahmen (Tabellen 4a, 4b und 4c)	Тур	Durchgangswerte D _i
Versickerung durch 30 cm bewachsenen Oberboden	D1	0,20
Durchgangswert D = Produkt aller D _i (K	D = 0,20	

Emissionswert E= B · D : E = 4	1,40
--------------------------------	------

E = 4,40; G = 11,00

E <= G --> ist anzustreben

Projekt: St 2177 "Kulmain-Marktredwitz"

OU Waldershof

Bauherr: Freistaat Bayern

Datum: 24.01.2014

Ergebnis:

Die gewählte Maßnahme (Versickerung durch 30 cm bewachsenen Oberboden) reicht als Behandlungsmaßnahme aus.

Hydraulische Gewässerbelastung

$$Qdr = qr * Au (6.2)$$

qr aus Tabelle 3:

- großer Flachlandbach "Kreuzweiher Bächl"
- mittlere Wasserspiegelbreite bsp = 1,80 m
- mittlerer Wasserstand h = 0,25 m
- mittlere Fliessgeschwindigkeit (abgeschätzt) v = 0,4 m/s
- --> qr = 120 I/(s*ha)

$$Qdr = 120 I/(s*ha) * 1,67 ha = 200,4 I/s$$

$$Qdr,max = ew * MQ * 1000 (6.3)$$

ew aus Tabelle 4:

Gewässersediment überwiegend sandig-kiesig

ew = 4

mit

$$MQ = v * h * bsp (6.4)$$

$$MQ = 0.4 \text{ m/s} * 0.25 \text{ m} * 1.8 \text{ m} = 0.18 \text{ m}3/\text{s}$$

$$Qdr,max = 4 * 0.18 m3/s * 1000 = 720 l/s$$

Ergebnis:

Qdr,gewählt = 60 l/s

--> Qdr,gewählt < Qdr < Qdr,max

Hinweis:

Für die Bemessung des Beckenvolumens wird davon abweichend der halbierte Drosselabfluss (30 l/s) angesetzt.

Berechnungsergebnis nach A 138 (RRB 1)

Versickerung durch 30 cm bewachsenen Oberboden

Formel (6):
$$Q_S = \frac{k_f}{2} \times A_S$$

umgestellt nach
$$A_S$$
: $A_S = \frac{Q_S \times 2}{k_f}$

mit

$$k_f$$
 = Durchlässigkeitsbeiwert der Oberbodenschicht
Lieferboden = 5 x 10⁻⁵ m/s

ergibt sich die benötigte Versickerungsfläche zu:

$$A_S = \frac{0.03 \text{m}^3 / \text{s} \times 2}{5 \times 10^{-5} \text{ m/s}} = 1.200 \text{ m}^2$$

Berechnungsergebnis gemäß A 117 (RRB 3)

PROGRAMM REHM / REBECK 9.0

Ing.-Büro für Tiefbautechnik Wolf & Zwick Marktredwitz GmbH

Projekt: Waldershof

Einzelbeckenberechnung

Becken:	Becken 03	Abfluss nach:	0	
Bezeichnung:	Entwässerungsgebiet	04		

Datum: 24.01.2014

m3/h

269

Bemessungsgrundlagen

Fläche des kanalisierten Einzugsgebietes	AE,k =	5,10	ha
Befestigte Fläche	AE,b =	3,77	ha
Mittlerer Abflussbeiwert der befestigten Fläche	Psi m,b =	0,599	_
Nicht befestigte Fläche	AE,nb =	1,33	ha
Mittlerer Abflussbeiwert der nicht befestigten Fläche	Psi m,nb =	0,100	-
Rechnerische Fließzeit im Kanalnetz bei Vollfüllung	tf =	8,84	min
Trockenwetterabfluss	Qt24 =	0,00	l/s
Drosselabfluss	Qdr =	50,00 l	l/s
Zuschlagsfaktor	fz =	1,20 -	-

Berechnungsergebnisse:

Undurchlässige Fläche: Au = AE,b * Psi m,b + AE,nb * Psi m,nb Au = 2,39 ha Drosselabflussspende: qdr,r,u = (Qdr - Qt24) / Au qdr,r,u = 20,92 l/s*ha Abminderungsfaktor aus tf = 8,8 min und n = 0,20 /a fA = 0,983 - 1

Gewählter Niederschlag: **Waldershof** Überschreitungshäufigkeit: n= 0,20 /a

Dauer-	Niederschlags-	Zugehörige	Drosselabfluss-	Differenz	spezifisches
stufe	höhe	Regenspende	spende		Speichervolumen
D	hN	r	qdr,r,u	r - qdr,r,u	Vs,u
min, h	mm	l/s.ha	l/s.ha	l/s.ha	m3/ha
5 min	9,8	326,7	20,9	305,8	108
10 min	14,6	243,3	20,9	222,4	157
15 min	17,9	198,9	20,9	178,0	189
20 min	20,3	169,2	20,9	148,2	210
30 min	23,9	132,8	20,9	111,9	238
45 min	27,6	102,2	20,9	81,3	259
60 min	30,3	84,2	20,9	63,2	269
90 min	32,7	60,6	20,9	39,6	253

Erforderliches spezifisches Volumen Vs,u =

Erforderliches Rückhaltevolumen V = Vs,u * Au V = 642 m3

gewähltes Beckenvolumen: $V = 650 \text{ m}^3$

Ingenieurbüro f. Tiefbautechnik Wolf & Zwick Marktredwitz GmbH

Projekt: St 2177 "Kulmain-Marktredwitz"

OU Waldershof

Bauherr: Freistaat Bayern

Datum: 24.01.2014

Berechnungsergebnis nach M 153 (RRB 3)

Gewässer	Тур	Gewässerpunkte G
(Tabellen 1a und 1b)		
Fließgewässer	G4	21
großer Hügel- und Berglandbach (bSp=1-5 m; v >=		
0,5 m/s)		

Flächen	Art der Befestigung	A _{E,k}	Ψ_{m}	Au	f _i
Mulden	unbefestigt	0,5200	0,40	0,2080	0,09
Dammböschungen	bewachsen	0,5800	0,30	0,1740	0,07
Einschnittsböschungen	bewachsen	0,8420	0,50	0,4210	0,18
Bankette	Schotter	0,4700	0,50	0,2350	0,10
Fahrbahn	Asphalt	1,3530	0,90	1,2177	0,51
Gärten, Wiesen und Kulturland mit	flaches Gelände	1,3400	0,10	0,1340	0,06
möglichem Regenabfluss in das					
Entwässerungssystem					
Summe		5,11		2,39	~1,00

Flächenanteil f _i		Lut	ft L _i	Fläch	nen F _i	Abflussbelastung B _i
(Kapitel 4)		(Tabe	(Tabelle 2) (Tabelle 3)			
A _u ,,	fi	Тур	Punkte	Тур	Punkte	$B_i = f_i * (L_i + F_i)$
0,2080	0,09	L2	2	F5	27	0,58
0,1740	0,07	L2	2	F5	27	1,45
0,4210	0,18	L2	2	F5	27	4,06
0,2350	0,10	L2	2	F5	27	3,19
1,2177	0,51	L2	2	F5	27	11,89
0,1340	0,06	L1	1	F2	8	2,34

Ingenieurbüro f. Tiefbautechnik Wolf & Zwick Marktredwitz GmbH

Projekt: St 2177 "Kulmain-Marktredwitz"

OU Waldershof

Bauherr: Freistaat Bayern

Datum: 24.01.2014

 $\Sigma = 2,39$ $\Sigma = \sim 1,00$ Abflussbelastung $B = \Sigma B_i$: B = 23,51

B = 23,51; G = 21,00

B > G --> eine Regenwasserbehandlung ist erforderlich

Maximal zulässiger Durchgangswert $D_{max} = G / B$	$D_{\text{max}} = 0.89$
---	-------------------------

Vorhergesehene Behandlungsmaßnahmen (Tabellen 4a, 4b und 4c)	Тур	Durchgangswerte D _i
Anlagen mit Dauerstau und maximal 18 m/h Oberflächenbe- schickung bei rkrit, z.B. Absetzbecken von Versickerungsanlagen oder Regenrück- halteanlagen (s.Kapitel 7.4)	D25d	0,35
Durchgangswert D = Produkt aller D _i (K	D = 0,35	

Emissionswert E= B · D :	E = 8,23

E = 8,23; G = 21,00

E <= G --> ist anzustreben

Projekt: St 2177 "Kulmain-Marktredwitz"

OU Waldershof

Bauherr: Freistaat Bayern

Datum: 24.01.2014

Ergebnis:

Die gewählte Sedimentationsanlage reicht als Behandlungsmaßnahme aus.

Hydraulische Gewässerbelastung

$$Qdr = qr * Au (6.2)$$

gr aus Tabelle 3:

- großer Hügel- und Berglandbach "Kösseine"
- mittlere Wasserspiegelbreite bsp = 4,0 m
- mittlerer Wasserstand h = 0.45 m
- mittlere Fliessgeschwindigkeit (abgeschätzt) v = 0,8 m/s
- --> qr = 240 I/(s*ha)

$$Qdr = 240 I/(s*ha) * 3,05 ha = 732 I/s$$

$$Qdr,max = ew * MQ * 1000 (6.3)$$

ew aus Tabelle 4:

Gewässersediment überwiegend sandig-kiesig

$$ew = 4$$

mit

$$MQ = v * h * bsp (6.4)$$

$$MQ = 0.8 \text{ m/s} * 0.45 \text{ m} * 4.0 \text{ m} = 1.44 \text{ m}3/\text{s}$$

$$Qdr,max = 4 * 1,44 m3/s * 1000 = 5.760 l/s$$

Ergebnis:

Qdr,gewählt = 100 l /s

Hinweis:

Für die Bemessung des Beckenvolumens wird davon abweichend der halbierte Drosselabfluss (50l/s) angesetzt